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Abstract. The information entropy of Gegenbauer polynomials is relevant since this is related
to the angular part of the information entropies of certain quantum mechanical systems such as
the harmonic oscillator and the hydrogen atom in D dimensions. We give an effective method to
compute the entropy for Gegenbauer polynomials with an integer parameter and obtain the first
few terms in the asymptotic expansion as the degree of the polynomial tends to infinity.

1. Introduction and statement of results

Over the last few years much attention has been paid to the study of the information entropy

Sρ = −
∫

ρ(x) ln ρ(x) dx.

Probably, the most important case is when ρ(x) = |�(x)|2, where �(x) is the wavefunction of
a quantum mechanical system (in the position or momentum space). For many standard models,
such as the harmonic oscillator or the hydrogen atom, the wavefunction can be expressed in
terms of some classical orthogonal polynomials (Gegenbauer, Laguerre, Hermite, etc) [5, 9].
This gives rise to the study of the entropy of these families, that is, of functionals of the form

Sn(w) =
∫
�

q2
n(x) ln q2

n(x)w(x) dx (1)

where � is an interval of the real axis, w is a weight supported on � and qn is the corresponding
orthonormal polynomial of degree n.

The asymptotic properties of the sequence (1) as n → ∞ have been thoroughly studied in
[2, 3] for a wide class of weights w. Nevertheless, in practice it is very important to compute
Sn(w) for each n ∈ N. In this paper we obtain explicit formulae for the entropy of Gegenbauer
polynomials, i.e. polynomials

Gl
n(x) = gnl x

n + lower degree terms gnl > 0

orthonormal on � = [−1, 1] with respect to the probability density

wl(x) = cl(1 − x2)l−1/2 x ∈ �.

0305-4470/00/376549+12$30.00 © 2000 IOP Publishing Ltd 6549



6550 V S Buyarov et al

It is known that for l � 1,

cl = �(l + 1)√
π�(l + 1/2)

gnl = 2n�(n + l)

�(l + 1)

(
l(n + l) �(2l)

�(n + 2l) n!

)1/2

. (2)

For the sake of brevity, we denote by Sl
n the entropy of the polynomials Gl

n,

Sl
n =

∫
�

(Gl
n(x))

2 ln(Gl
n(x))

2 wl(x) dx. (3)

Expressions for Sl
n have been obtained recently for l = 0, 1, 2. We will refer to these special

cases below. Our aim is a generalization of the method proposed by one of the authors [4], in
order to develop an effective procedure for computing Sl

n for any l ∈ N, l � 2.
In what follows we denote by Pn the space of all polynomials of degree � n, and

P = ∪n�0Pn. In order to make the statement of the main result self-contained, we must
introduce an additional piece of notation. Keeping the value l ∈ N (l � 2) fixed, we can
generate the polynomialsP−1 = 0, P0 = 1, . . . , P2l−2, using the following recurrence relation:

Pj+1(x) = (2l − 2j − 3)xPj (x) − (n + j + 1)(n + 2l − j − 1)(1 − x2)Pj−1(x). (4)

The parameters of P2l−2 will play a special role, so we will write

P(x) = P2l−2(x) = αnl

2l−2∏
j=1

(x − ξj ). (5)

In particular, αnl 
= 0. Additionally, define

H(x) =
2l−2∑
j=0

(−1)jPj−1(x)P2l−j−3(x) = βnl x
2l−4 + lower degree terms. (6)

The main result of this paper is the following:

Theorem 1. For l, n ∈ N, l � 2, let P and H be as defined above. Then the following formula
holds:

Sl
n = snl + rnl

2l−2∑
j=1

(1 − ξ 2
j )

[
H

P ′
Gl+1

n−1

Gl
n

]
(ξj ) (7)

where

snl = 2 ln(gnl/2n) − n

n + l
+ 2n(n + l)

βnl

αnl

+ 2n
2l−1∑
j=l

1

n + j
(8)

rnl = 2(n + l)

√
2(l + 1)n(n + 2l)

2l + 1
. (9)

The leading coefficients gnl of Gl
n are given in (2).

Interpolated values for Sl
n, n = 1, . . . , 75, are plotted in figure 1 for l = 2, 3, 4.

Formulae (7)–(9) allow also to obtain a refinement of the asymptotic results of [2]. From
[2, theorem 2] it follows that when n → ∞, the sequence of entropies Sl

n tends to the value

Sl
∞ = 1 + ln

�(2l)

�(l)�(l + 1)
. (10)
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Figure 1. Entropy Sl
n, n = 1, . . . , 75, for l = 2, 3, 4.

In order to state the result we need once again some auxiliary polynomials. For fixed l ∈ N,
l � 2, we generate S−1 = 0, S0 = 1, . . . , S2l−2, but now by the following recurrence:

Sj+1(x) = (2l − 2j − 3)Sj (x) − xSj−1(x) S = S2l−2 (11)

and denote by R the polynomial obtained as in (6), but with the polynomials Pj replaced by
Sj :

R(x) =
2l−2∑
j=0

(−1)jSj−1(x)S2l−j−3(x). (12)

Theorem 2. For l � 2 the sequence of Gegenbauer entropies has the following asymptotic
expansion as n → ∞:

Sl
n = Sl

∞ +
γl

n
+ O(n−2) (13)

where

γl = −2l2 + l − 2
l−1∑
j=1

√
ζj

R

S ′ (ζj )
Jl+1/2

Jl−1/2
(
√
ζj ). (14)

Here ζj , j = 1, . . . , l − 1 are the zeros of S, and Jλ is the Bessel function of order λ.

Interpolated values for n(Sl
n − Sl

∞), n = 1, . . . , 75, are plotted in figure 2 for l = 2, 3, 4.
Observe that the Bessel functions in (14) can be evaluated in a finite number of terms involving
trigonometric functions, since

Jn+1/2(z) = Rn,1/2(z)J1/2(z) − Rn−1,3/2(z)J−1/2(z)

where Rn,ν are Lommel polynomials and

J1/2(z) =
(

2

πz

)1/2

sin z J−1/2(z) =
(

2

πz

)1/2

cos z

(see, e.g., Watson [8, sections 3.4 and 9.6]).
The structure of the paper is as follows. In section 2 we give some background material,

mention some well known properties of Gegenbauer polynomials and settle the notation.
In section 3 we obtain an explicit expression of the logarithmic potential for Gegenbauer
polynomials, which we use in section 4 to obtain the explicit expression for the entropy given
in theorem 1. The asymptotic expansion given in theorem 2 is obtained in section 5.
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Figure 2. Plot of n(Sl
n − Sl∞), n = 1, . . . , 75, for l = 2, 3, 4.

2. Background

We will make use of some well known facts, listed below without proof. In this section we
also settle some additional notation.

The key fact on which the following computation is based is the connection between the
entropy of the orthogonal polynomials and potentials, as established in [5]. If we denote by

V l
n(x) =

∫
�

ln
1

|t − x| |G
l
n(t)|2wl(t) dt

the logarithmic potential of the weight |Gl
n(x)|2wl(x), then by definition of Gl

n we have

Sl
n = 2 ln gnl − 2

n∑
j=1

V l
n(xj ). (15)

Here xj = x
(l)
n,j are the zeros of the polynomial Gl

n. In what follows we omit the indices n and
l from the notation of the zeros of Gl

n, whenever this cannot lead to confusion.
If Tn(x) = cos(n arccos x) = 2n−1xn + · · · is the Chebyshev polynomial of the first kind,

then [7, equation (4.7.14) on p 81]

Gl
n(x) = kl

nT
(l)
n+l(x) kl

n =
[

2

π

�(n + 1)

cl(n + l)�(n + 2l)

]1/2

> 0 (16)

where T (l) denotes the lth derivative of T .
A consequence of a well known trigonometric identity is the following formula, which

we shall call Euler’s formula:

[Tn(x)]
2 + (1 − x2)

[
T ′
n(x)

n

]2

= 1. (17)

We make use of the function of the second kind,

Ql
n(x) =

∫
�

T
(l)
n+l(t)

t − x
(1 − t2)l−1/2 dt
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for x ∈ � the integral is taken in the sense of the principal value (i.e. it is the sum of the
boundary values of Ql

n on �). It is a simple exercise to prove that [1, equations (22.13.3) and
(22.13.4) on p 785]

Q1
n+l−1(x) = −π(n + l)Tn+l(x) Q0

n+l(x) = π

n + l
T ′
n+l(x). (18)

Finally, the recurrence relations for Ql
n

Ql
n(x) = (2l − 3)xQl−1

n+1(x) − (n + 2)(n + 2l − 2)(1 − x2)Ql−2
n+2(x) (19)

are a straightforward consequence of the differential equation [7, equation (4.7.5) on p 80]

(1 − x2)T
(l)
n+l(x) = (2l − 3)xT (l−1)

n+l (x) − (n + 2)(n + 2l − 2)T (l−2)
n+l (x). (20)

Note, in particular, that Ql
n are polynomials for n ∈ N and l an integer. This is, in general, not

so for l not an integer.

3. Explicit formulae for potentials

Let us introduce two auxiliary functions,

t ln(x) =
√

1 − x2
T

(l)
n+l

T
(l−1)
n+l

(x) ql
n(x) = 1√

1 − x2

Ql
n

Ql−1
n+1

(x)

and a new variable,

y = x√
1 − x2

. (21)

Then (19) and (20) can be rewritten as

t ln(x) = (2l − 3)y − (n + 2)(n + 2l − 2)

t l−1
n+1 (x)

(22)

ql
n(x) = (2l − 3)y − (n + 2)(n + 2l − 2)

ql−1
n+1 (x)

. (23)

Denote by pk and rk , k = 1, . . . , 2l−2 the linearly independent solutions of the recurrence
relation

τk+1(y) = (2l − 2k − 3)y τk(y) − (n + k + 1)(n + 2l − k − 1)τk−1(y) (24)

given by their initial conditions

p−1(y) = 0 p0(y) = 1 and r0(y) = 0 r1(y) = 1.

In particular, degpk = k, deg rk = k − 1. Observe that both sequences depend on the integer
parameters l and n, in such a way that if pk(y) = pk(l, n; y), then rk(y) = pk−1(l−1, n+1; y).
Whenever it cannot lead to confusion, we omit the explicit reference to these parameters in
the polynomials.

Standard arguments allow us to show that for k = 1, . . . , l − 1, we have

t ln(x) = pk(y)t
l−k
n+k (x) − (n + k + 1)(n + 2l − k − 1)pk−1(y)

rk(y)t
l−k
n+k (x) − (n + k + 1)(n + 2l − k − 1)rk−1(y)

. (25)
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The sequence ql
n also satisfies a formula analogous to (25). To be consistent with (21), denote

yj = xj√
1 − x2

j

. (26)

Then, taking in (25) x = xj (that is, evaluating at a zero of t ln), we obtain

t l−k
n+k (xj ) = (n + k + 1)(n + 2l − k − 1)

pk−1

pk

(yj ). (27)

Now we need to prove some auxiliary results.

Proposition 1. For 0 � s � l the following identities hold:

T
(l−s)
n+l

Tn+l
(xj ) = (n + l)

(√
1 − x2

j

)s−l �(n + 2l − s)

�(n + s + 1)

ps−1

pl−1
(yj ) (28)

Ql−s
n+s

Tn+l
(xj ) = π(−1)l−s(n + l)

(√
1 − x2

j

)l−s−1 p2l−s−2

pl−1
(yj ). (29)

Proof. To obtain (28) it is sufficient to multiply the identities in (27) varying k from s to l − 1.
In order to establish (29) we show that

qk
n+l−k(xj ) = −pl+k−2

pl+k−3
(yj ) k = 1, . . . , l. (30)

We proceed by induction. By (18) we have

q1
n+l−1(x) = − (n + l)2

√
1 − x2

Tn+l

T ′
n+l

(x) (31)

and using (28) with s = l − 1 we obtain (30) for k = 1.
Assume that we have established (30) for certain k � 1. Then, by recurrence (23),

qk+1
n+l−k−1(xj ) = (2k − 1)yj + (n + l − k + 1)(n + l + k − 1)

pl+k−3

pl+k−2
(yj )

and (30) for k + 1 follows directly from the recurrence (24). Thus, equation (30) is proved for
k = 1, . . . , l.

Now (29) is straightforward: multiply the identities in (30) for k = 1, . . . , l − s and use
(18) and (31). Note that (31) is equivalent to (29) for s = l − 1. �

Taking in (28) s = l − 1, with account of Euler’s formula (17) we obtain

T 2
n+l(xj ) = p2

l−1

(n + l)2p2
l−2 + p2

l−1

(yj ). (32)

Proposition 2. For j = 0, . . . , l − 1,

(n + j + 1)(n + 2l − j − 1)pj−1p2l−j−3 + pjp2l−j−2 = (−1)jp2l−2. (33)

Proof. Again, we proceed by induction. For j = 0 the identity is trivial, and for j = 1 it
follows immediately from the recurrence (24) with k = 2l − 3.
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Assume the assertion established up to certain j . If we substitute in the left-hand side of
(33) the expression for pj from (24), we obtain

(n + j + 1)(n + 2l − j − 1)pj−1p2l−j−3 + pjp2l−j−2

= pj−1((2l − 2j − 1)yp2l−j−2 + (n + j + 1)(n + 2l − j − 1)p2l−j−3)

−(n + j)(n + 2l − j)pj−2p2l−j−2

= −pj−1p2l−j−1 − (n + j)(n + 2l − j)pj−2p2l−j−2.

Here we have used again the recurrence (24) with k = 2l − j − 2. Now the induction step is
completed. �

Taking in (33) j = l − 1 we obtain that

(n + l)2p2
l−2 + p2

l−1 = (−1)l−1p2l−2

which shows that p2l−2(y) is non-vanishing on R.
Now we are ready to work out a formula for the potential V l

n , evaluated at the zeros of the
polynomial Gl

n. The proof relies on the recurrence established in [4], which in our notation
can be stated as follows: for x ∈ �,

V l
n(x) = V l−1

n+1 (x) − 1

n + 2l − 1
+ cl(k

l
n)

2(1 − x2)T
(l)
n+l(x)Q

l−1
n+1(x). (34)

The expression for the initial value V 0
n+l was obtained in [5]:

V 0
n+l(x) = ln 2 − 1

2(n + l)
+

T 2
n+l(x)

n + l
x ∈ �. (35)

By (34) and (35), V l
n ∈ P for x ∈ �. This property, which is only true for integer l, plays a

key role in the proof of (7).

Proposition 3. If Gl
n(xj ) = 0 then

V l
n(xj ) = ln 2 +

1

2(n + l)
− vnl + (n + l)

h2l−4

p2l−2
(yj ) (36)

where

vnl =
2l−1∑
j=l

1

n + j

and

h2l−4(y) =
2l−2∑
j=0

(−1)jpj−1(y)p2l−j−3(y) degh2l−4 = 2l − 4. (37)

Proof. Applying the recurrence (34) backwards in l we obtain

V l
n(x) = V 0

n+l(x) − vnl + (1 − x2)

l−1∑
j=0

cl−j (k
l−j

n+j )
2T

(l−j)

n+l Q
l−j−1
n+j+1 (x). (38)

Taking in (38) x = xk , by means of propositions 1 and 2 and using (32) we obtain

V l
n(xk) = V 0

n+l(xk) − vnl + 2(n + l)

l−1∑
j=0

(−1)j
pj−1p2l−j−3

p2l−2
(yk). (39)
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Moreover, by (32) and (33) identity (35) can be rewritten as

V 0
n+l(xj ) = ln 2 +

1

2(n + l)
+ (n + l)(−1)l

p2
l−2

p2l−2
(yj ).

Clearly,

(−1)l
p2

l−2

p2l−2
+ 2

l−1∑
j=0

(−1)j
pj−1p2l−j−3

p2l−2
=

2l−2∑
j=0

(−1)j
pj−1p2l−j−3

p2l−2

which establishes the assertion. �
Finally, we are going back to our variable x from (21). Define

Pj (x) =
(√

1 − x2
)j

pj (y) (40)

it can readily be seen that Pj is a polynomial of degree j . Due to (24), {Pj } satisfies the
recurrence (4) with the initial condition

P−1(x) = 0 P0(x) = 1.

Now, from proposition 3 we have

V l
n(xj ) = ln 2 +

1

2(n + l)
− vnl + (n + l)(1 − x2

j )
H

P
(xj ) (41)

where H is given by (6). We also follow our previous agreement to denote P2l−2 by P (see
(5)).

4. Explicit expression for the entropy. Particular cases

Let us introduce the rational function

F l
n(z) = (1 − z2)

H

P

T
(l+1)
n+l

T
(l)
n+l

(z).

Then by (41)

n∑
j=1

V l
n(xj ) = n ln 2 +

n

2(n + l)
− n vnl + (n + l)

n∑
j=1

res
xj

F l
n. (42)

Let ξj = ξ
(l)
j,n, j = 1, . . . , 2l − 2, be the zeros of P(x). Using the Cauchy residue theorem,

we obtain
n∑

j=1

V l
n(xj ) = n ln 2 +

n

2(n + l)
− nvnl − (n + l) res∞ F l

n − (n + l)

2l−2∑
j=1

res
ξj

F l
n.

The residue of F l
n at infinity is n βnl/αnl , where as above, βnl and αnl are the leading coefficients

of H and P , respectively. Thus

n∑
j=1

V l
n(xj ) = n ln 2 +

n

2(n + l)
− nvnl − n(n + l)

βnl

αnl

− (n + l)

2l−2∑
j=1

res
ξj

F l
n.

From this identity, with account of (15) and (16), the assertion of theorem 1 readily follows
with rnl = 2(n + l)kl

n/k
l+1
n−1.
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Let us consider some particular cases. Although formula (7) is valid for l � 2, we can
apply it for l = 1 taking the empty sum on the right-hand side. Thus,

S1
n = sn1 = n

n + 1

which was obtained in [9] (see also [5]).
The case l = 2 was studied in [4]. Now H(x) = −1 and

P(x) = (n + 1)(n + 3)(x2 − ξ 2) ξ = n + 2√
(n + 1)(n + 3)

.

By the symmetry of Gl
n, equation (7) reads as

S2
n = sn2 − rn2(1 − ξ 2)G3

n−1(ξ)

(n + 1)(n + 3)ξ G2
n(ξ)

.

Since

rn2 = 2(n + 2)

√
6n(n + 4)

5
and gn2 = 2n

√
3(n + 1)

n + 3

we obtain

S2
n = ln

(
3(n + 1)

n + 3

)
+

n(n2 + 2n − 1)

(n + 1)(n + 2)(n + 3)
+

2√
(n + 1)3(n + 3)3

T ′′′
n+2(ξ)

T ′′
n+2(ξ)

.

This formula was obtained in [4] (note two misprints in that paper). We can make use of the
differential equation for the Chebyshev polynomials in order to obtain the following explicit
expression:

S2
n = ln

(
3(n + 1)

n + 3

)
+

n3 − 5n2 − 29n − 27

(n + 1)(n + 2)(n + 3)
+

1

n + 2

(
n + 3

n + 1

)n+2

.

5. Asymptotic behaviour of the entropy

In this section we are interested in the asymptotics of the potentials and the entropy of
Gegenbauer polynomials as n → ∞. According to theorem 1, we first need to establish
the behaviour of the polynomials P given by (4). Recall that Pj depends both on l and n, but
we omit it from the notation.

We introduce the sequence of polynomials Sj (z) = Sj (l, z), depending on the integer
parameter l and given by the recurrence (11), with the initial conditions S−1(l, z) = 0 and
S0(l, z) = 1. Once again, considering l fixed, we avoid explicit reference to it in Sj .

Proposition 4. For j = 0, . . . , 2l − 2,

lim
n→∞ Pj

(
1 − z

2n2

)
= Sj (z) (43)

lim
n→∞

1

2n2
P ′

j

(
1 − z

2n2

)
= −S ′

j (z) (44)

locally uniformly in C.
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Proof. We prove the identity (43) by induction on j . Then (44) readily follows from (43) by
taking derivatives.

For j = −1 and 0 (43) holds trivially. Assume that it has been established for all natural
indices not greater than j . By (4),

Pj+1

(
1 − z

2n2

)
= (2l − 2j − 3)Pj

(
1 − z

2n2

)

− (n + j + 1)(n + 2l − j − 1)

n2
zPj−1

(
1 − z

2n2

)
+ O(n−2)

locally uniformly in C. According to the induction hypothesis, both polynomials Pj−1 and Pj

in this formula have limits given by (43). Thus, the whole right-hand side converges locally
uniformly in C. It remains to use the recurrence (11) for Sj (z). �

Remark 1. By the symmetry of P with respect to the origin,

lim
n→∞ Pj

(
−1 − z

2n2

)
= (−1)jSj (−z) (45)

lim
n→∞

1

2n2
P ′

j

(
−1 − z

2n2

)
= (−1)jS ′

j (−z). (46)

Now we can study the asymptotic behaviour of the zeros ξ
(l)
j,n, j = 1, . . . , 2l − 2, of P(z).

Let us recall the sequence pk generated by (24) with p−1 = 0, p0 = 1. If we denote

pk(y) =
k∑

j=0

ak
j (n)y

j

then by (24), pk(−y) = (−1)kpk(y), and ak
j (n) = 0 for k − j odd. It is easy to prove by

induction that for even k − j the ak
j (n) are polynomials in n of degree k − j . Taking into

account (40) we have

P(x) =
l−1∑
j=0

a2l−2
2j (n) x2j (1 − x2)l−1−j . (47)

Since deg a2l−2
2j (n) = 2l − 2 − 2j ,

P(x)

a2l−2
0 (n)

= (1 − x2)l−1 + O(n−2) (48)

locally uniformly in C. Thus, via Hurwitz’ theorem [6, corollary 4.10e on p 283], l − 1 zeros
of P tend to 1, and the remaining l−1 zeros tend to −1. Moreover, by (43) and (45), the zeros
ξ
(l)
j,n, j = 1, . . . , 2l − 2 of P(z) can be numbered in such a way that the following expression

holds:

ξ
(l)
j,n = (−1)j − ζj,l(n)

2n2
ζ2j−1,l(n) = −ζ2j,l(n)

and there exist finite limits

lim
n→∞ ζ2j,l(n) = ζj j = 1, . . . , l − 1.

By proposition 4,

S2l−2(ζj ) = 0.
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We can use the well known formulae of Mehler–Heine [7, theorem 8.1.1]:

lim
n→∞ Tn+l

(
1 − z

2n2

)
= cos

√
z =

√
π/2z1/4J−1/2(

√
z)

locally uniformly in C. Here Jλ is the Bessel function of order λ, which can be given explicitly
by

Jλ(z) =
∞∑
k=0

(−1)k

k!�(λ + k + 1)

( z

2

)λ+2k
.

Taking derivatives and using the well known properties of the Bessel functions, we obtain that
locally uniformly in C

lim
n→∞ n−2kT

(k)
n+l

(
1 − z

2n2

)
=

√
π/2z−k/2+1/4Jk−1/2(

√
z).

Thus, we have the asymptotic expression

lim
n→∞ n−2 T

(l+1)
n+l

T
(l)
n+l

(
1 − z

2n2

)
= z−1/2 Jl+1/2

Jl−1/2
(
√
z).

Evaluating at the zeros of P of even index and using proposition 4, we have

lim
n→∞ n2(1 − ξ 2

2j,n)
H

P ′
T

(l+1)
n+l

T
(l)
n+l

(ξ2j,n) = −
√
ζj

2

R

S ′ (ζj )
Jl+1/2

Jl−1/2
(
√
ζj ) (49)

with

S(z) = S2l−2(z) and R(z) =
2l−2∑
j=0

(−1)jSj−1(z)S2l−j−3(z).

It remains to study the asymptotics of snl in (8). Easy computations show that for vnl from
proposition 3 we have the asymptotics

vnl =
2l−1∑
j=l

1

n + j
= l

n
− l(3l − 1)

2n2
+ O(n−3). (50)

In order to compute the leading coefficients of the polynomials P and H , observe that

Pj (x) = (
√

1 − x2)jpj

(
x√

1 − x2

)
=

j∑
k=0

a
j

k (n)x
k(

√
1 − x2)j−k

so that

Pj (x) = ijpj (−i)xj + · · ·
(where i is the imaginary unit). Taking into account that p2l−2 and h2l−4 are even, we have

βnl

αnl

= −h2l−4

p2l−2
(i).

Using (37) and taking into account the degrees of ak
j (n) as polynomials in n, it is not difficult

to check the asymptotics

−h2l−4

p2l−2
(i) = 1

a2l−2
0 (n)

l−2∑
j=0

a
2j
0 (n)a

2l−2j−4
0 (n) + O(n−4)
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so that by (33),

−h2l−4

p2l−2
(i) = −

l−2∑
j=0

1

(n + 2j + 2)(n + 2l − 2j − 2)
+ O(n−4).

Then,

n(n + l)
βnl

αnl

= −l + 1 +
l(l − 1)

n
+ O(n−2). (51)

By (2) and (16),

2 ln
(
gnl/2n

) = ln

(
�(2l)

�(l)�(l + 1)

)
+ ln

(
�(n + l)�(n + l + 1)

�(n + 1)�(n + 2l)

)

and Stirling’s formula yields

2 ln gnl/2n = ln
�(2l)

�(l)�(l + 1)
− l(l − 1)

n
+ O(n−2). (52)

Gathering (49)–(52), the assertion of theorem 2 follows.
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[5] Dehesa J S, Van Assche W and Yáñez R J 1997 Information entropy of classical orthogonal polynomials and

their application to the harmonic oscillator and Coulomb potentials Methods Appl. Anal. 4 91–110
[6] Henrici P 1988 Applied and Computational Complex Analysis vol I (Wiley Classics Library Edition) (New York:

Wiley)
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[9] Yáñez R J, Van Assche W and Dehesa J S 1994 Position and momentum information entropies of the D-

dimensional harmonic oscillator and hydrogen atom Phys. Rev. A 50 3065–79


